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In contrast to, but complementing, previous studies, 
our work focuses on mass-production environments such 
as those used to create cars or houses, where produc-
tion costs are a major constraint. Reducing production 
costs comes at the expense of limiting the level of detail 
in customization—for example, when buying a car, you 
can choose the color but only from a limited palette. The 
tradeoff is acceptable in these domains because in general 
the focus is on covering the average demand, not the needs 
of each individual. 

Variability models have proven useful in mass-production 
domains to maximize reuse when developing a set of simi-
lar software systems (a system family).4 Because common 
system parts—components, models, frameworks, docu-
mentation, and so on—are clearly identified, it is possible to 
detect reuse opportunities for each new development. 

Our research shows that autonomic behavior can be 
achieved by leveraging variability models at runtime. In 
this way, the modeling effort made at design time is not 
only useful for producing the system but also provides a 
richer semantic base for autonomic behavior during execu-
tion. The use of variability models at runtime brings new 
opportunities for autonomic capabilities by reutilizing the 
efforts invested at design time. 

Our proposed approach has two aspects:

A
utonomic computing (AC) envisions comput-
ing environments that evolve without the 
need for human intervention. A system with 
autonomic capabilities installs, configures, 
tunes, and maintains its own components at 

runtime. Defining appropriate abstractions and models 
for understanding, controlling, and designing auto-
nomic behavior is a challenge at the heart of AC.1 Several 
research efforts have successfully produced major auto-
nomic capabilities, such as self-configuration using 
reinforcement learning and self-adaptation using Petri- 
net-based2 and adaptation models.2,3 However, enhance-
ment with these autonomic capabilities increases the 
resulting systems’ complexity and production methods. 

By automating tasks such as installation, 
healing, and updating, autonomic comput-
ing simplifies system operation at the cost 
of increasing internal complexity. A pro-
posed approach for developing autonomic 
systems in smart homes reuses variability 
models at runtime to provide a richer se-
mantic base for decision making.
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system should adapt itself to offer its services using 
alternative components to reduce the impact of loss 
of the device. For example, if an alarm fails, the smart 
home can make the home lights blink as a replace-
ment for the failed alarm. 
Self-adaptation. •	 Users’ needs differ and change over 
time. The system should adjust its services to fulfill 
user preferences. For example, when a user leaves, 
the smart home should reorganize services to give 
priority to security.

This autonomic behavior is closely related to context  
adaptation—a system’s ability to gather information about 
the domain with which it shares an interface, evaluate this 
information, and change its behavior according to the cur-
rent situation. Individual autonomic capabilities also require 
the system to infer knowledge from the current situation and 
trigger an appropriate response. However, AC emphasizes 
freeing system users from the details of system operation 
and maintenance and providing 24/7 operation.1 

To achieve such behavior, our approach uses variability 
models4 and a dynamic product-line architecture.6 Variabil-
ity models specify a smart home’s possible configurations, 
while a dynamic product-line architecture can be rapidly 
retargeted to a specific configuration. 

Variability modeling
From the different modeling techniques suited for vari-

ability analysis, we chose feature modeling because it has 
good tool support for variability reasoning.7 Feature mod-
eling is widely used to specify system functionality in a 
coarse-grained fashion by means of features that consti-
tute increments in system functionality. 

Features are hierarchically linked in a tree-like structure 
through variability relationships such as optional, manda-
tory, single-choice, and multiple-choice. Figure 1 shows a 

Reuse of design knowledge to •	

achieve AC. We reuse the knowl-
edge previously captured in 
variability models to describe the 
variants in which a system can 
evolve. In response to changes in 
the context, the system itself can 
query these models to determine 
the necessary modifications to 
its architecture.
Reuse of existing model-manage-•	

ment technologies at runtime. 
We leverage models at runtime 
without modification—that is, 
we keep the same model repre-
sentation at runtime that we use 
at design time: the XML Meta-
data Interchange standard. This avoids the need for 
technological bridges, making it possible to apply the 
same technologies used at design time to manipulate 
XMI models at runtime. 

We developed the Model-Based Reconfiguration Engine 
(MoRE) to implement model-management operations. 
These operations determine how the system should evolve 
and the mechanisms for modifying the system architecture 
accordingly. Thus, systems use the knowledge captured by 
variability models as if they were the policies that drive the 
system’s autonomic evolution at runtime. 

We applied our approach to the case of smart homes 
(www.autonomic-homes.com). This domain is suited 
for variability modeling techniques because of the high 
degree of similarities among different systems; also, AC 
capabilities can address some of the domain’s limitations 
such as minimal support for evolution as new technologies 
emerge or as an application type matures.5 Our research 
demonstrates the approach’s feasibility for smart homes, 
especially for self-healing and -configuring capabilities. 

AUTONOMIC COMPUTING  
FOR SMART HOMES 

People continuously reconfigure domestic spaces and 
the technologies involved to support their activities.5 To 
reduce this configuration effort, smart homes can provide 
the following autonomic capabilities:

Self-configuration.•	  New kinds of devices can be incor-
porated into the system. For example, when a new 
movement or occupancy detector is added to a home 
location, the different smart home services such as se-
curity or lighting control should automatically use it 
without requiring configuration actions from the user. 
Self-healing.•	  When a device is removed or fails, the 
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Figure 1. Smart home feature model. Features are hierarchically linked in a tree-
like structure through variability relationships.
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⨀(LightingByOccupancy) = {a,g} 
⨀(OccupancySimulation) = {1,b,c,d} 
⨀(InHomeDetection) = {e,f} 

For example, the channels labeled a and g in Figure 2  
support LightingByOccupancy.

Reconfiguring System Architecture 
In software product-line engineering, feature models 

focus on the efficient derivation of customized prod-
uct variants that, once created, retain their properties 
throughout their lifetime. We argue that a system can acti-
vate or deactivate its own features dynamically at runtime 
by fulfilling certain context conditions. Examples of such 
conditions in smart homes are NewVolumetricSensor, 
AlarmFailure, and EmptyHome. 

Because a given condition can trigger the activation/
deactivation of several features, we define resolution 
(R) to represent the set of changes a condition triggers. 
A resolution is a list of pairs (F,S) in which F indicates 
a feature and S the feature’s state. Each resolution is 
associated with a context condition and represents 
the change, in terms of feature activation/deactiva-
tion, produced in the system when the condition is 
fulfilled: 

R = {(F,S)}F ∈ [FM] ∧ S ∈ {Active,Inactive} 

For instance, the condition EmptyHome is associated with 
the following resolution: 

R
EmptyHome = {(OccupancySimulation,Active),(InHome 

Detection,Active),(LightingByOccupancy,Inactive)}

This indicates that when the smart home senses that 
it is empty (according to the condition), it must re-
configure itself to deactivate LightingByOccupancy 
and to activate both OccupancySimulation and 
InHomeDetection. 

smart home feature model with automated illumination, 
multimedia, and security. The yellow boxes represent the 
smart home’s current features, while the red boxes repre-
sent potential variants that may be activated in the future. 

We let [FM] denote the set of all features, active and 
inactive, in a feature model. A system’s current configura-
tion (CC) is the set of all active features (F) in its feature 
model: 

CC = {F}F ∈ [FM] ∧ F.state = Active ∧ CC ⊆ FM 

For example, for the feature model in Figure 1:

CC = {SmartHome,Security,InHomeSecuritySensing,
Infrared160,Alarm,SilentAlarm,Multimedia,AutomatedIll
umination,LightingByOccupancy}

Dynamic product-line architecture
We use a dynamic product-line architecture based on 

different components and their communication chan-
nels. We classify these components into two categories: 
services and devices. This architecture allows an easy 
reconfiguration since communication channels can be 
established dynamically between the components, and 
these components can dynamically appear or disappear 
from configurations. 

Figure 2 shows this reconfigurable architecture accord-
ing to the concrete syntax of PervML (www.pros.upv.es/
labs/projects/pervml), a domain-specific language for de-
veloping smart homes. PervML provides a set of conceptual 
primitives for describing the system independently of the 
technology. PervML’s structural model represents services 
by a circle, devices by a square, and the channels among 
services and devices by lines. 

To specify which smart home components and channels 
support a certain feature, the model defines the superim-
position operator (⨀). The superimposition takes a feature 
and returns the set of components and channels related to 
this feature, as the following examples show: 
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Figure 2. Impact of active features on system components for two scenarios: (a) the user is at home; (b) nobody is at home. 
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Model-based Reconfiguration Engine 
To achieve AC, a system must evolve from one con-

figuration to another. Since our approach performs 
reconfiguration in terms of features, we developed MoRE 
to translate contextual changes into changes in the activa-
tion/deactivation of features.

Figure 3 shows the reconfiguration process. The context 
monitor uses the runtime state as input to check context 
conditions (step 1). If any of these conditions are fulfilled 
(for example, the home becomes empty), MoRE uses the 
associated resolution and previous model operations to 
query the runtime models about necessary architectural 
modifications (step 2). The engine uses the models’ re-
sponses to generate a reconfiguration plan (step 3). This 
plan contains a set of reconfiguration actions that modify 
the system architecture and maintain consistency between 
the models and architecture (step 4). Execution of the plan 
modifies the architecture to activate/deactivate the fea-
tures specified in the resolution (step 5).

MoRE uses the OSGi framework8 to implement the re-
configuration actions. This framework contains a complete 
components model that extends Java’s dynamic capabili-
ties. We classify reconfiguration actions into three main 
categories:

Component actions.•	  Jeff Kramer and Jeff Magee9 de-
scribe how a component must transit from an active 

The feature model at runtime enables the 
smart home to perform this reconfiguration. The 
smart home queries the models at runtime about 
the architectural components that support the 
features involved in the resolution. For example, 
taking the previous REmptyHome as input, the smart 
home queries the feature model to determine 
the architecture for that specific context. 

Architecture increments and decrements are 
calculated to determine the actions to modify 
the architecture. Specifically, we have defined 
two operations: ArchitectureIncrement (A∆) and 
ArchitectureDecrement (A∇). These operations 
take a resolution as input, and they calculate 
the modifications to the architecture in terms 
of components and channels. We define these 
operations by means of the superimposition op-
erator and the relative complement operator (\), 
also known as the set-theoretic difference: 

A∆ = ⨀((F,S) ∈ RS = Active) \ ⨀(CC)
A∇ = ⨀((F,S) ∈ RS = Inactive)) \ ⨀((F,S) ∈ 
RS = Active)

For example, the results of these operations 
given R

EmptyHome of the reconfiguration scenario 
shown in Figure 2 are as follows: 

A∆EmptyHome = {1,b,c,d,e,f}
A∇EmptyHome = {a,g} 

These operations indicate how to reorganize system 
components to move from a system configuration for 
when the user is at home (Figure 2a) to another when 
nobody is at home (Figure 2b). The movement sensors are 
no longer used for lighting (communication channels a and 
g are disabled, as indicated in A∇EmptyHome); instead, they are 
used to provide information to the security service (com-
munication channels e and f are enabled, as indicated in 
A∆EmptyHome). In addition, the occupancy simulator (labeled 
as 1) is activated, and the communication channels re-
quired for this service to communicate with multimedia 
(channel b), lighting (channel c), and security (channel d) 
are established, as A∆EmptyHome indicates. 

A resolution represents a partial configuration in which 
only a portion of the desired feature model state is de-
fined. To check that the defined resolution set is actually 
within the variability model’s constraints, developers 
can apply existing feature model analysis tools. For ex-
ample, the Feature Model Analyzer (FAMA)7 validates a 
partial configuration’s consistency with a given feature 
model. Further, FAMA can combine multiple resolutions 
to ensure that there are no invalid configurations in a 
given situation. 
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 Figure 3. Model-based reconfiguration process. MoRE translates 
contextual changes into changes in the activation/deactivation of 
features.
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Once the architecture has been successfully modified, 
MoRE must update the feature model accordingly. It sets 
the LightingByOccupancy feature to inactive and both 
OccupancySimulation and InHomeDetection to active to 
reflect the system’s current state. Consequently, both the 
feature model and the system architecture are synchro-
nized and support the desired behavior when nobody is 
at home. 

EVALUATION 
We evaluated our approach with respect to both  

autonomic-level achievement and performance. 

Autonomic level achievement 
To determine the level of autonomic behavior that can 

be achieved with our proposed approach, we used a state 
machine, which engineers employ to represent and check 
adaptation policies.3

Figure 4 illustrates how a simple feature model consist-
ing of only four features (Figure 4a) defines eight possible 
system configurations, C1 to C8 (Figure 4c). When defining 
a condition for activation of a system feature by means of 
a resolution—RConditionX, RConditionY, or RConditionZ (Figure 4b)—a 
designer is expressing the transitions between different 
system states (Figure 4d) in a declarative manner, without 
the need for an exhaustive definition of each state transi-
tion or the transitions derived from the composition of 
states. In this case, a single resolution such as RConditionY 
results in eight transitions among system variants (repre-
sented as dashed lines). 

A feature model hides much of the complexity in the 
definition of an autonomic system’s adaptation space. In 
Figure 1, the feature model containing 18 features repre-
sents more than 200,000 states, and the three resolutions 
specified for this model—NewVolumetricSensor, AlarmFail-
ure, and EmptyHome—define more than 600,000 possible 
transitions among system variants. Feature models provide 
an intensional rather than extensional description of each 
of the system’s possible states. 

We used real-life deployment examples for smart homes 
to evaluate the autonomic level our approach achieved. We 
collected these examples from previous studies of how 
users continuously reconfigure their homes and technolo-
gies within them to meet their demands.5 Specifically, we 
cataloged adaptation scenarios to test the autonomic ca-
pabilities our approach introduces.10 

Overall, we successfully reproduced 78 percent of the 
scenarios. Our approach covered 93 percent of self-config-
uring scenarios and 81 percent of self-healing scenarios, 
while providing more discrete results—65 percent cover-
age—for self-adapting scenarios. Many self-configuring 
and -healing scenarios involve simple conditions (a new 
device is plugged in or a device fails) for triggering activa-
tion of a single feature that controls the new device or 

(operational) state to a quiescent (idle) state to perform 
system adaptation. We have implemented this pat-
tern by means of the OSGi capabilities to install, start, 
restart, and uninstall components without restarting 
the entire system. All those components that are irrel-
evant for the current configuration are in a catalog of 
quiescent components that do not consume processor 
or memory resources but are ready to be started. 
Channel actions.•	  Once a component transits to an 
active state, it must establish communication with 
other services. These communication channels, also 
called bindings, are implemented using the OSGi Wire 
class. An OSGI Wire is an enhanced implementation 
of the publish-subscribe pattern oriented to dynamic 
systems. In particular, an OSGi Wire implements the 
whiteboard pattern. 

Model actions.•	  After the system architecture has been 
modified, MoRE updates the feature model according 
to the new system functionality. It performs this update 
by means of a partial reflection of the architecture using 
model introspection. This powerful feature of existing 
modeling frameworks like the Eclipse Modeling Frame-
work (www.eclipse.org/modeling) allows a program to 
work with any model by querying its structure dynami-
cally at runtime. Model actions apply this technique to 
update the feature model’s current configuration. 

In example shown in Figure 2, when the user leaves 
home, MoRE is in charge of composing the suitable actions 
to reorganize the system architecture to give priority to 
security. To achieve A∆, the engine applies a component 
action to 

find the occupancy simulator’s components in the •	

catalog of quiescent components, and 
start these components. •	

MoRE thus moves the components from the catalog to 
the current architectural configuration. The occupancy 
simulator generates inputs for the multimedia and light-
ing services with the aim of deterring thieves by acting 
as if there were people at home, and channel actions are 
required to connect these services. Additional channel ac-
tions are needed to connect the movement sensors with the 
security service. To achieve A∇, MoRE breaks the channels 
between the movement sensors and lighting to deactivate 
the LightingByOccupancy feature. 

A feature model hides much of the 
complexity in the definition of an 
autonomic system’s adaptation space.
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Brice Morin and colleagues3 propose a combination of 
model-driven engineering and aspect-oriented modeling 
to support dynamic runtime variability. They dynami-
cally compose aspects to produce a range of configuration 
models and then use these models to generate the scripts 
needed to adapt a running system from one runtime con-
figuration to another. These adaptation scripts feature 
reconfiguration commands to modify the system archi-
tecture as our approach does, enabling the development 
of adaptive systems without having to enumerate all their 
possible configurations. Because costs represent a major 
constraint in mass-production environments, we achieve 
autonomic behavior by reusing at runtime the same vari-
ability models that were used at design time. 

Jaejoon Lee and Kyo C. Kang12 propose an approach 
for engineering dynamically reconfigurable products. In 
particular, they extend feature models with the notion 
of binding units to group system features. They also pro-
vide guidelines for building dynamically reconfigurable 
architectures based on QoS properties and for how a con-
figurator should work. Nevertheless, they remain at the 
general level with respect to the models employed and do 
not provide techniques for superimposing features and 
system components as we do. Further, because their ar-
chitectural components are grouped on indivisible binding 
units, the number of system variants to support reconfigu-
ration is smaller than those of our feature-based approach. 
Since we use feature models without modifications, we can 
benefit from current work on feature model reasoning7 

instead of having to develop ad hoc reasoners. 

provides alternative functionality in case of failure. More 
detail is required to define autonomic behavior in self-
adapting scenarios, which deal more directly with user 
preferences. 

Because our approach defines autonomic behavior at 
the feature level, some specific requirements for system 
adaptation fall out of the variability scope. However, even 
though this lack of coverage could be complemented by 
developing specific components for the unsupported cases, 
it does not seem economically realistic to build individual 
features to suit each user. We intend to focus on common-
alities and abstractions that are valid across a set of users, 
looking to trade off personalization and reusability. For 
those needs that fall out of the variability model’s scope, 
designers must decide whether to provide a specific solu-
tion for a single system or update the variability model 
accordingly. 

Scalability of model-handling  
technologies at runtime 

Model manipulation at runtime, as opposed to design 
time, is subject to the same efficiency requirements as 
the rest of the system because the execution of model 
operations impacts overall system performance. In the 
adaptation scenario evaluations, model processing did not 
introduce significant performance penalization. However, 
to validate whether our proposed approach scales to large 
systems, we quantified this overhead for randomly gener-
ated large models.

These models started with one element and were 
populated with 200 new elements in each iteration. After 
model population, we applied and evaluated the differ-
ent operations supporting the calculation of architecture 
modifications A∆∇. Even with 45,000 elements in each 
model, the response time was less than 500 milliseconds, 
which is acceptable compared to the typical performance 
of devices and communication networks in the smart 
home domain. Thus, we conclude that our reuse-based 
approach can be applied in other domains with similar 
temporal constraints. 

RELATED WORK 
David Garlan and Bradley Schmerl11 pioneered the use 

of architectural-based models during runtime as the basis 
for system monitoring, problem detection, and repair. 
To achieve self-healing, they extended architectural 
models with property annotations on components to de-
scribe their quality of service (QoS). In contrast, we base 
autonomic behavior on variability models without modi-
fications. Further, our resolutions scale to large systems 
because our approach expresses autonomic behavior in 
a declarative manner. Apart from self-healing scenarios, 
our approach also addresses self-adapting and -configur-
ing scenarios. 

1

2 43

C1 = {1}
C2 = {1,2}
C3 = {1,3}
C4 = {1,4}
C5 = {1,2,3}
C6 = {1,2,4}
C7 = {1,3,4}
C8 = {1,2,3,4}

R ConditionX = { (2,True) }
R ConditionY = { (3,True) }
R ConditionZ = { (4,True) }

(a) (b)

(c) (d)
C1 C2 C3

C4 C5

C6 C7 C8

Figure 4. Visualizing variability as an adaptation space. A 
simple feature model consisting of only (a) four features 
defines (c) eight possible system configurations. When 
defining a condition for activation of a system feature by 
means of (b) a resolution, a designer is expressing (d) the 
transitions between different system states in a declarative 
manner, without the need for an exhaustive definition of 
each state transition or the transitions derived from the 
composition of states.
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W
ith more devices being added to our 
surroundings, users increasingly seek 
simplicity. AC plays a key role in simpli-
fying computing systems by reducing 
the need for maintenance. Historically, 

autonomic system developers focused on advanced capa-
bilities. However, for mass-production environments, a 
tradeoff is necessary between customization and system 
development. The use of design models at runtime offers 
new opportunities for autonomic capabilities without 
increasing development costs. This is accomplished by 
means of a planned reutilization of the efforts invested 
at design time. 

Whether for smart homes, mobile devices, or automo-
tive systems, users require more autonomic functionality. 
We believe the techniques we have applied to the smart 
home domain can achieve similar results in other mass-
production environments. In addition, the role of models 
at design time can be extensively exploited for validation 
and verification. 

Because feature models, which determine autonomic 
behavior, are available at design time, we can thoroughly 
analyze specifications for the purpose of validation. We 
can guarantee deterministic reconfigurations at runtime, 
which is essential for reliable systems. Further, existing 
variability analysis techniques can detect unintended 
evolutional behavior in autonomic systems as a next step 
in providing systems that fulfill many user needs out of 
the box.  
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