
computer	46

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE	

In contrast to, but complementing, previous studies,
our work focuses on mass-production environments such
as those used to create cars or houses, where produc-
tion costs are a major constraint. Reducing production
costs comes at the expense of limiting the level of detail
in customization—for example, when buying a car, you
can choose the color but only from a limited palette. The
tradeoff is acceptable in these domains because in general
the focus is on covering the average demand, not the needs
of each individual.

Variability models have proven useful in mass-production
domains to maximize reuse when developing a set of simi-
lar software systems (a system family).4 Because common
system parts—components, models, frameworks, docu-
mentation, and so on—are clearly identified, it is possible to
detect reuse opportunities for each new development.

Our research shows that autonomic behavior can be
achieved by leveraging variability models at runtime. In
this way, the modeling effort made at design time is not
only useful for producing the system but also provides a
richer semantic base for autonomic behavior during execu-
tion. The use of variability models at runtime brings new
opportunities for autonomic capabilities by reutilizing the
efforts invested at design time.

Our proposed approach has two aspects:

A
utonomic computing (AC) envisions comput-
ing environments that evolve without the
need for human intervention. A system with
autonomic capabilities installs, configures,
tunes, and maintains its own components at

runtime. Defining appropriate abstractions and models
for understanding, controlling, and designing auto-
nomic behavior is a challenge at the heart of AC.1 Several
research efforts have successfully produced major auto-
nomic capabilities, such as self-configuration using
reinforcement learning and self-adaptation using Petri-
net-based2 and adaptation models.2,3 However, enhance-
ment with these autonomic capabilities increases the
resulting systems’ complexity and production methods.

By automating tasks such as installation,
healing, and updating, autonomic comput-
ing simplifies system operation at the cost
of increasing internal complexity. A pro-
posed approach for developing autonomic
systems in smart homes reuses variability
models at runtime to provide a richer se-
mantic base for decision making.

Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano,

Polytechnic University of Valencia, Spain

Autonomic
Computing through
Reuse of Variability
Models at Runtime:
The Case of Smart
Homes

IEEE Computer - October 2009 www.computer.org/computer

Carlos
Highlight

47OCTOBER 2009

system should adapt itself to offer its services using
alternative components to reduce the impact of loss
of the device. For example, if an alarm fails, the smart
home can make the home lights blink as a replace-
ment for the failed alarm.
Self-adaptation. •	 Users’ needs differ and change over
time. The system should adjust its services to fulfill
user preferences. For example, when a user leaves,
the smart home should reorganize services to give
priority to security.

This autonomic behavior is closely related to context
adaptation—a system’s ability to gather information about
the domain with which it shares an interface, evaluate this
information, and change its behavior according to the cur-
rent situation. Individual autonomic capabilities also require
the system to infer knowledge from the current situation and
trigger an appropriate response. However, AC emphasizes
freeing system users from the details of system operation
and maintenance and providing 24/7 operation.1

To achieve such behavior, our approach uses variability
models4 and a dynamic product-line architecture.6 Variabil-
ity models specify a smart home’s possible configurations,
while a dynamic product-line architecture can be rapidly
retargeted to a specific configuration.

Variability modeling
From the different modeling techniques suited for vari-

ability analysis, we chose feature modeling because it has
good tool support for variability reasoning.7 Feature mod-
eling is widely used to specify system functionality in a
coarse-grained fashion by means of features that consti-
tute increments in system functionality.

Features are hierarchically linked in a tree-like structure
through variability relationships such as optional, manda-
tory, single-choice, and multiple-choice. Figure 1 shows a

Reuse of design knowledge to •	

achieve AC. We reuse the knowl-
edge previously captured in
variability models to describe the
variants in which a system can
evolve. In response to changes in
the context, the system itself can
query these models to determine
the necessary modifications to
its architecture.
Reuse of existing model-manage-•	

ment technologies at runtime.
We leverage models at runtime
without modification—that is,
we keep the same model repre-
sentation at runtime that we use
at design time: the XML Meta-
data Interchange standard. This avoids the need for
technological bridges, making it possible to apply the
same technologies used at design time to manipulate
XMI models at runtime.

We developed the Model-Based Reconfiguration Engine
(MoRE) to implement model-management operations.
These operations determine how the system should evolve
and the mechanisms for modifying the system architecture
accordingly. Thus, systems use the knowledge captured by
variability models as if they were the policies that drive the
system’s autonomic evolution at runtime.

We applied our approach to the case of smart homes
(www.autonomic-homes.com). This domain is suited
for variability modeling techniques because of the high
degree of similarities among different systems; also, AC
capabilities can address some of the domain’s limitations
such as minimal support for evolution as new technologies
emerge or as an application type matures.5 Our research
demonstrates the approach’s feasibility for smart homes,
especially for self-healing and -configuring capabilities.

AUTONOMIC COMPUTING
FOR SMART HOMES

People continuously reconfigure domestic spaces and
the technologies involved to support their activities.5 To
reduce this configuration effort, smart homes can provide
the following autonomic capabilities:

Self-configuration.•	 New kinds of devices can be incor-
porated into the system. For example, when a new
movement or occupancy detector is added to a home
location, the different smart home services such as se-
curity or lighting control should automatically use it
without requiring configuration actions from the user.
Self-healing.•	 When a device is removed or fails, the

Smart home

Occupancy simulation Security

Siren

Automated illumination

Volumetric
360-degree detector

Silent
alarm

Infrared
160-degree detector

Visual
alarm

In-home
detection

Multimedia

Multiple-
choice

Single-
choice

Optional Mandatory

Lighting
by occupancy

Alarm

Sensing Outside
detector

Perimeter
detection

Blinking
lights

In-home
security

Variation point
Current con�guration

Figure 1. Smart home feature model. Features are hierarchically linked in a tree-
like structure through variability relationships.

IEEE Computer - October 2009 www.computer.org/computer

cover FE ATURE

computer	48

⨀(LightingByOccupancy) = {a,g}
⨀(OccupancySimulation) = {1,b,c,d}
⨀(InHomeDetection) = {e,f}

For example, the channels labeled a and g in Figure 2
support LightingByOccupancy.

Reconfiguring System Architecture
In software product-line engineering, feature models

focus on the efficient derivation of customized prod-
uct variants that, once created, retain their properties
throughout their lifetime. We argue that a system can acti-
vate or deactivate its own features dynamically at runtime
by fulfilling certain context conditions. Examples of such
conditions in smart homes are NewVolumetricSensor,
AlarmFailure, and EmptyHome.

Because a given condition can trigger the activation/
deactivation of several features, we define resolution
(R) to represent the set of changes a condition triggers.
A resolution is a list of pairs (F,S) in which F indicates
a feature and S the feature’s state. Each resolution is
associated with a context condition and represents
the change, in terms of feature activation/deactiva-
tion, produced in the system when the condition is
fulfilled:

R = {(F,S)}F ∈ [FM] ∧ S ∈ {Active,Inactive}

For instance, the condition EmptyHome is associated with
the following resolution:

R
EmptyHome = {(OccupancySimulation,Active),(InHome

Detection,Active),(LightingByOccupancy,Inactive)}

This indicates that when the smart home senses that
it is empty (according to the condition), it must re-
configure itself to deactivate LightingByOccupancy
and to activate both OccupancySimulation and
InHomeDetection.

smart home feature model with automated illumination,
multimedia, and security. The yellow boxes represent the
smart home’s current features, while the red boxes repre-
sent potential variants that may be activated in the future.

We let [FM] denote the set of all features, active and
inactive, in a feature model. A system’s current configura-
tion (CC) is the set of all active features (F) in its feature
model:

CC = {F}F ∈ [FM] ∧ F.state = Active ∧ CC ⊆ FM

For example, for the feature model in Figure 1:

CC = {SmartHome,Security,InHomeSecuritySensing,
Infrared160,Alarm,SilentAlarm,Multimedia,AutomatedIll
umination,LightingByOccupancy}

Dynamic product-line architecture
We use a dynamic product-line architecture based on

different components and their communication chan-
nels. We classify these components into two categories:
services and devices. This architecture allows an easy
reconfiguration since communication channels can be
established dynamically between the components, and
these components can dynamically appear or disappear
from configurations.

Figure 2 shows this reconfigurable architecture accord-
ing to the concrete syntax of PervML (www.pros.upv.es/
labs/projects/pervml), a domain-specific language for de-
veloping smart homes. PervML provides a set of conceptual
primitives for describing the system independently of the
technology. PervML’s structural model represents services
by a circle, devices by a square, and the channels among
services and devices by lines.

To specify which smart home components and channels
support a certain feature, the model defines the superim-
position operator (⨀). The superimposition takes a feature
and returns the set of components and channels related to
this feature, as the following examples show:

Lights

Lighting
service

Alarm
Security
service

TV

Multimedia
service

Movement sensors

(a) (b)

Movement sensors

1

Security
service

Occupancy
simulator

Alarm

b c
d

e

f

a

TV Lights

Lighting by
occupancy Occupancy

simulation

In-home
detection

g

Device ServiceChannel

Figure 2. Impact of active features on system components for two scenarios: (a) the user is at home; (b) nobody is at home.

IEEE Computer - October 2009 www.computer.org/computer

49OCTOBER 2009

Model-based Reconfiguration Engine
To achieve AC, a system must evolve from one con-

figuration to another. Since our approach performs
reconfiguration in terms of features, we developed MoRE
to translate contextual changes into changes in the activa-
tion/deactivation of features.

Figure 3 shows the reconfiguration process. The context
monitor uses the runtime state as input to check context
conditions (step 1). If any of these conditions are fulfilled
(for example, the home becomes empty), MoRE uses the
associated resolution and previous model operations to
query the runtime models about necessary architectural
modifications (step 2). The engine uses the models’ re-
sponses to generate a reconfiguration plan (step 3). This
plan contains a set of reconfiguration actions that modify
the system architecture and maintain consistency between
the models and architecture (step 4). Execution of the plan
modifies the architecture to activate/deactivate the fea-
tures specified in the resolution (step 5).

MoRE uses the OSGi framework8 to implement the re-
configuration actions. This framework contains a complete
components model that extends Java’s dynamic capabili-
ties. We classify reconfiguration actions into three main
categories:

Component actions.•	 Jeff Kramer and Jeff Magee9 de-
scribe how a component must transit from an active

The feature model at runtime enables the
smart home to perform this reconfiguration. The
smart home queries the models at runtime about
the architectural components that support the
features involved in the resolution. For example,
taking the previous REmptyHome as input, the smart
home queries the feature model to determine
the architecture for that specific context.

Architecture increments and decrements are
calculated to determine the actions to modify
the architecture. Specifically, we have defined
two operations: ArchitectureIncrement (A∆) and
ArchitectureDecrement (A∇). These operations
take a resolution as input, and they calculate
the modifications to the architecture in terms
of components and channels. We define these
operations by means of the superimposition op-
erator and the relative complement operator (\),
also known as the set-theoretic difference:

A∆ = ⨀((F,S) ∈ RS = Active) \ ⨀(CC)
A∇ = ⨀((F,S) ∈ RS = Inactive)) \ ⨀((F,S) ∈
RS = Active)

For example, the results of these operations
given R

EmptyHome of the reconfiguration scenario
shown in Figure 2 are as follows:

A∆EmptyHome = {1,b,c,d,e,f}
A∇EmptyHome = {a,g}

These operations indicate how to reorganize system
components to move from a system configuration for
when the user is at home (Figure 2a) to another when
nobody is at home (Figure 2b). The movement sensors are
no longer used for lighting (communication channels a and
g are disabled, as indicated in A∇EmptyHome); instead, they are
used to provide information to the security service (com-
munication channels e and f are enabled, as indicated in
A∆EmptyHome). In addition, the occupancy simulator (labeled
as 1) is activated, and the communication channels re-
quired for this service to communicate with multimedia
(channel b), lighting (channel c), and security (channel d)
are established, as A∆EmptyHome indicates.

A resolution represents a partial configuration in which
only a portion of the desired feature model state is de-
fined. To check that the defined resolution set is actually
within the variability model’s constraints, developers
can apply existing feature model analysis tools. For ex-
ample, the Feature Model Analyzer (FAMA)7 validates a
partial configuration’s consistency with a given feature
model. Further, FAMA can combine multiple resolutions
to ensure that there are no invalid configurations in a
given situation.

Java code

Model-Based
Reconfiguration Engine

Quiescent

Recon�guration plan

Action
Action Action

Action
Action

Variability and DSL models

Smart home gatewayKNX device bus

OSGi

Context monitor
Condition1

ConditionN ResolutionN
Condition2 Resolution2

CC, A A R, , ,

2

Model operations

3

4

1

5

Resolution1

 Figure 3. Model-based reconfiguration process. MoRE translates
contextual changes into changes in the activation/deactivation of
features.

IEEE Computer - October 2009 www.computer.org/computer

cover FE ATURE

computer	50

Once the architecture has been successfully modified,
MoRE must update the feature model accordingly. It sets
the LightingByOccupancy feature to inactive and both
OccupancySimulation and InHomeDetection to active to
reflect the system’s current state. Consequently, both the
feature model and the system architecture are synchro-
nized and support the desired behavior when nobody is
at home.

EVALUATION
We evaluated our approach with respect to both

autonomic-level achievement and performance.

Autonomic level achievement
To determine the level of autonomic behavior that can

be achieved with our proposed approach, we used a state
machine, which engineers employ to represent and check
adaptation policies.3

Figure 4 illustrates how a simple feature model consist-
ing of only four features (Figure 4a) defines eight possible
system configurations, C1 to C8 (Figure 4c). When defining
a condition for activation of a system feature by means of
a resolution—RConditionX, RConditionY, or RConditionZ (Figure 4b)—a
designer is expressing the transitions between different
system states (Figure 4d) in a declarative manner, without
the need for an exhaustive definition of each state transi-
tion or the transitions derived from the composition of
states. In this case, a single resolution such as RConditionY
results in eight transitions among system variants (repre-
sented as dashed lines).

A feature model hides much of the complexity in the
definition of an autonomic system’s adaptation space. In
Figure 1, the feature model containing 18 features repre-
sents more than 200,000 states, and the three resolutions
specified for this model—NewVolumetricSensor, AlarmFail-
ure, and EmptyHome—define more than 600,000 possible
transitions among system variants. Feature models provide
an intensional rather than extensional description of each
of the system’s possible states.

We used real-life deployment examples for smart homes
to evaluate the autonomic level our approach achieved. We
collected these examples from previous studies of how
users continuously reconfigure their homes and technolo-
gies within them to meet their demands.5 Specifically, we
cataloged adaptation scenarios to test the autonomic ca-
pabilities our approach introduces.10

Overall, we successfully reproduced 78 percent of the
scenarios. Our approach covered 93 percent of self-config-
uring scenarios and 81 percent of self-healing scenarios,
while providing more discrete results—65 percent cover-
age—for self-adapting scenarios. Many self-configuring
and -healing scenarios involve simple conditions (a new
device is plugged in or a device fails) for triggering activa-
tion of a single feature that controls the new device or

(operational) state to a quiescent (idle) state to perform
system adaptation. We have implemented this pat-
tern by means of the OSGi capabilities to install, start,
restart, and uninstall components without restarting
the entire system. All those components that are irrel-
evant for the current configuration are in a catalog of
quiescent components that do not consume processor
or memory resources but are ready to be started.
Channel actions.•	 Once a component transits to an
active state, it must establish communication with
other services. These communication channels, also
called bindings, are implemented using the OSGi Wire
class. An OSGI Wire is an enhanced implementation
of the publish-subscribe pattern oriented to dynamic
systems. In particular, an OSGi Wire implements the
whiteboard pattern.

Model actions.•	 After the system architecture has been
modified, MoRE updates the feature model according
to the new system functionality. It performs this update
by means of a partial reflection of the architecture using
model introspection. This powerful feature of existing
modeling frameworks like the Eclipse Modeling Frame-
work (www.eclipse.org/modeling) allows a program to
work with any model by querying its structure dynami-
cally at runtime. Model actions apply this technique to
update the feature model’s current configuration.

In example shown in Figure 2, when the user leaves
home, MoRE is in charge of composing the suitable actions
to reorganize the system architecture to give priority to
security. To achieve A∆, the engine applies a component
action to

find the occupancy simulator’s components in the •	

catalog of quiescent components, and
start these components. •	

MoRE thus moves the components from the catalog to
the current architectural configuration. The occupancy
simulator generates inputs for the multimedia and light-
ing services with the aim of deterring thieves by acting
as if there were people at home, and channel actions are
required to connect these services. Additional channel ac-
tions are needed to connect the movement sensors with the
security service. To achieve A∇, MoRE breaks the channels
between the movement sensors and lighting to deactivate
the LightingByOccupancy feature.

A feature model hides much of the
complexity in the definition of an
autonomic system’s adaptation space.

IEEE Computer - October 2009 www.computer.org/computer

51OCTOBER 2009

Brice Morin and colleagues3 propose a combination of
model-driven engineering and aspect-oriented modeling
to support dynamic runtime variability. They dynami-
cally compose aspects to produce a range of configuration
models and then use these models to generate the scripts
needed to adapt a running system from one runtime con-
figuration to another. These adaptation scripts feature
reconfiguration commands to modify the system archi-
tecture as our approach does, enabling the development
of adaptive systems without having to enumerate all their
possible configurations. Because costs represent a major
constraint in mass-production environments, we achieve
autonomic behavior by reusing at runtime the same vari-
ability models that were used at design time.

Jaejoon Lee and Kyo C. Kang12 propose an approach
for engineering dynamically reconfigurable products. In
particular, they extend feature models with the notion
of binding units to group system features. They also pro-
vide guidelines for building dynamically reconfigurable
architectures based on QoS properties and for how a con-
figurator should work. Nevertheless, they remain at the
general level with respect to the models employed and do
not provide techniques for superimposing features and
system components as we do. Further, because their ar-
chitectural components are grouped on indivisible binding
units, the number of system variants to support reconfigu-
ration is smaller than those of our feature-based approach.
Since we use feature models without modifications, we can
benefit from current work on feature model reasoning7

instead of having to develop ad hoc reasoners.

provides alternative functionality in case of failure. More
detail is required to define autonomic behavior in self-
adapting scenarios, which deal more directly with user
preferences.

Because our approach defines autonomic behavior at
the feature level, some specific requirements for system
adaptation fall out of the variability scope. However, even
though this lack of coverage could be complemented by
developing specific components for the unsupported cases,
it does not seem economically realistic to build individual
features to suit each user. We intend to focus on common-
alities and abstractions that are valid across a set of users,
looking to trade off personalization and reusability. For
those needs that fall out of the variability model’s scope,
designers must decide whether to provide a specific solu-
tion for a single system or update the variability model
accordingly.

Scalability of model-handling
technologies at runtime

Model manipulation at runtime, as opposed to design
time, is subject to the same efficiency requirements as
the rest of the system because the execution of model
operations impacts overall system performance. In the
adaptation scenario evaluations, model processing did not
introduce significant performance penalization. However,
to validate whether our proposed approach scales to large
systems, we quantified this overhead for randomly gener-
ated large models.

These models started with one element and were
populated with 200 new elements in each iteration. After
model population, we applied and evaluated the differ-
ent operations supporting the calculation of architecture
modifications A∆∇. Even with 45,000 elements in each
model, the response time was less than 500 milliseconds,
which is acceptable compared to the typical performance
of devices and communication networks in the smart
home domain. Thus, we conclude that our reuse-based
approach can be applied in other domains with similar
temporal constraints.

RELATED WORK
David Garlan and Bradley Schmerl11 pioneered the use

of architectural-based models during runtime as the basis
for system monitoring, problem detection, and repair.
To achieve self-healing, they extended architectural
models with property annotations on components to de-
scribe their quality of service (QoS). In contrast, we base
autonomic behavior on variability models without modi-
fications. Further, our resolutions scale to large systems
because our approach expresses autonomic behavior in
a declarative manner. Apart from self-healing scenarios,
our approach also addresses self-adapting and -configur-
ing scenarios.

1

2 43

C1 = {1}
C2 = {1,2}
C3 = {1,3}
C4 = {1,4}
C5 = {1,2,3}
C6 = {1,2,4}
C7 = {1,3,4}
C8 = {1,2,3,4}

R ConditionX = { (2,True) }
R ConditionY = { (3,True) }
R ConditionZ = { (4,True) }

(a) (b)

(c) (d)
C1 C2 C3

C4 C5

C6 C7 C8

Figure 4. Visualizing variability as an adaptation space. A
simple feature model consisting of only (a) four features
defines (c) eight possible system configurations. When
defining a condition for activation of a system feature by
means of (b) a resolution, a designer is expressing (d) the
transitions between different system states in a declarative
manner, without the need for an exhaustive definition of
each state transition or the transitions derived from the
composition of states.

IEEE Computer - October 2009 www.computer.org/computer

cover FE ATURE

computer	52

	 7.	 D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated
Reasoning on Feature Models,” Proc. 17th Int’l Conf. Ad-
vanced Information Systems Eng. (CAiSE 05), LNCS 3520,
Springer-Verlag, 2005, pp. 491-503.

	 8.	 D. Marples and P. Kriens, “The Open Services Gateway Ini-
tiative: An Introductory Overview,” IEEE Comm. Magazine,
Dec. 2001, pp. 110-114.

	 9.	 J. Kramer and J. Magee, “The Evolving Philosophers Prob-
lem: Dynamic Change Management,” IEEE Trans. Software
Eng., Nov. 1990, pp. 1293-1306.

	10.	 C. Cetina, J. Fons, and V. Pelechano, “Applying Software
Product Lines to Build Autonomic Pervasive Systems,”
Proc. 12th Int’l Software Product Line Conf. (SPLC 08), IEEE
CS Press, 2008, pp. 117-126.

	11.	 D. Garlan and B. Schmerl, “Model-Based Adaptation for
Self-Healing Systems,” Proc. 1st Workshop Self-Healing
Systems (WOSS 02), ACM Press, 2002, pp. 27-32.

	12.	 J. Lee and K.C. Kang, “A Feature-Oriented Approach to De-
veloping Dynamically Reconfigurable Products in Product
Line Engineering,” Proc. 10th Int’l Software Product Line
Conf. (SPLC 06), IEEE CS Press, 2006, pp. 131-140.

Carlos Cetina is a researcher and PhD student in the
Centro de Investigación en Métodos de Producción Soft-
ware (Research Center on Software Production Methods),
Universidad Politécnica de Valencia (Polytechnic University
of Valencia), Spain. His research interests include model-
driven development, software product lines, autonomic
computing, and pervasive systems. Cetina received an MS
in computer science from the Polytechnic University of
Valencia. Contact him at ccetina@pros.upv.es.

Pau Giner is a researcher and PhD student in the Research
Center on Software Production Methods, Polytechnic Uni-
versity of Valencia. His research interests include business
process modeling, the Internet of Things, and mobile and
ubiquitous computing. Giner received an MS in computer
science from the Polytechnic University of Valencia. Contact
him at pginer@pros.upv.es.

Joan Fons is a collaborator professor in the Research Center
on Software Production Methods, Polytechnic University
of Valencia. His research interests include model-driven
development, Web engineering, pervasive computing, and
user interface development. Fons received a PhD in com-
puter science from the Polytechnic University of Valencia.
Contact him at jfons@pros.upv.es.

Vicente Pelechano is an associate professor in the Re-
search Center on Software Production Methods, Polytechnic
University of Valencia. His research interests include
model-driven development, Web engineering, mobile and
ubiquitous computing, and business process modeling.
Pelechano received a PhD in computer science from the
Polytechnic University of Valencia. He is currently leading
the technical supervision of the MOSKitt open source CASE
tool (www.moskitt.org). Contact him at pele@pros.upv.es.

W
ith more devices being added to our
surroundings, users increasingly seek
simplicity. AC plays a key role in simpli-
fying computing systems by reducing
the need for maintenance. Historically,

autonomic system developers focused on advanced capa-
bilities. However, for mass-production environments, a
tradeoff is necessary between customization and system
development. The use of design models at runtime offers
new opportunities for autonomic capabilities without
increasing development costs. This is accomplished by
means of a planned reutilization of the efforts invested
at design time.

Whether for smart homes, mobile devices, or automo-
tive systems, users require more autonomic functionality.
We believe the techniques we have applied to the smart
home domain can achieve similar results in other mass-
production environments. In addition, the role of models
at design time can be extensively exploited for validation
and verification.

Because feature models, which determine autonomic
behavior, are available at design time, we can thoroughly
analyze specifications for the purpose of validation. We
can guarantee deterministic reconfigurations at runtime,
which is essential for reliable systems. Further, existing
variability analysis techniques can detect unintended
evolutional behavior in autonomic systems as a next step
in providing systems that fulfill many user needs out of
the box.

Acknowledgments
Special thanks to Øystein Haugen for contributing valuable
thoughts on variability and model-driven development issues.
We also thank Nelly Bencomo and the anonymous reviewers
for their helpful comments on late versions of this article. This
work has been developed with the support of MEC under the
project SESAMO TIN2007-62894 and cofinanced by FEDER.

References
	 1.	 J.O. Kephart and D.M. Chess, “The Vision of Autonomic

Computing,” Computer, Jan. 2003, pp. 41-50.
	 2.	 J. Zhang and B.H.C. Cheng, “Model-Based Development

of Dynamically Adaptive Software,” Proc. 28th Int’l Conf.
Software Eng. (ICSE 06), ACM Press, 2006, pp. 371-380.

	 3.	 B. Morin et al., “An Aspect-Oriented and Model-Driven Ap-
proach for Managing Dynamic Variability,” Proc. 11th Int’l
Conf. Model Driven Eng. Languages and Systems (MoDELS
08), LNCS 5301, Springer-Verlag, 2008, pp. 782-796.

	 4.	 J. Coplien, D. Hoffman, and D. Weiss, “Commonality and
Variability in Software Engineering,” IEEE Software, Nov.
1998, pp. 37-45.

	 5.	 J. O’Brien et al., “At Home with the Technology: An Eth-
nographic Study of a Set-Top-Box Trial,” ACM Trans.
Computer-Human Interaction, Sept. 1999, pp. 282-308.

	 6.	 S. Hallsteinsen et al., “Dynamic Software Product Lines,”
Computer, Apr. 2008, pp. 93-95.

IEEE Computer - October 2009 www.computer.org/computer

